Cours d'anglais gratuitsRecevoir 1 leçon gratuite chaque semaine // Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés.

100% gratuit !
[Avantages]


Comme des milliers de personnes, recevez gratuitement chaque semaine une leçon d'anglais !



- Accueil
- Aide/Contact
- Accès rapides
- Lire cet extrait
- Livre d'or
- Nouveautés
- Plan du site
- Presse
- Recommander
- Signaler un bug
- Traduire cet extrait
- Webmasters
- Lien sur votre site



> Nos sites :
-Jeux gratuits
-Nos autres sites
   


Théorème des valeurs intermédiaires

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Théorème des valeurs intermédiaires
Message de cinddyy posté le 02-03-2011 à 11:52:56 (S | E | F)
Bonjour,
J
e révise pour mon bac mais je suis nul en maths et notamment sur cet(te) exercice:

On donne la fonction g définie sur l intervalle 020 par g(x)=-0,05x-1,5+0,9lnx+1.
On admet que g est strictement croissante sur l'intervalle 017 et strictement décroissante sur l'intervalle 1720.

Justifier qu'il existe un unique réel x0 dans l'intervalle 017 tel que g(x0)=0. Donner un encadrement de x0 d'amplitude 10− 2.

Pouvez-vous me mettre sur la voie s'il vous plaît?
M
erci d'avance
-------------------
Modifié par bridg le 02-03-2011 12:12


Réponse: Théorème des valeurs intermédiaires de iza51, postée le 02-03-2011 à 13:07:10 (S | E)
bonjour
théorème des valeurs intermédiaires
si f est une fonction continue sur [a,b] et si f(a)× f(b)<0, alors l'équation f(x)=0 admet une solution appartenant à [a;b]
Montre d'abord que ton équation f(x)=0 admet une solution dans [0;20]
On verra comment prouver l'unicité ensuite



Réponse: Théorème des valeurs intermédiaires de anthonyob, postée le 02-03-2011 à 19:37:16 (S | E)
Est-tu sûre de l'énoncé car la fonction g(x)=-0,05x-1,5+0,9lnx+1 est strictement croissante sur [0;18] et est décroissante sur [18;20].

Autrement pour prouver que cette fonction admet une unique solution sur [0;17]

Il Faut dire que cette fonction est continue et strictement monotone (croissante) sur [0;17]

de plus lim x tend vers O de g(x) = moins l'infini et g(17) = 1.2...

Donc 0 appartient à [moins l'infini ; 1.2]

Donc d'après le théorème de la bijection.

Il existe un unique réel x0 tel que g(x0)=0

1.94 < x0 < 1.95




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths










 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Recevoir une leçon chaque semaine | Exercices | Aide/Contact

> COURS ET TESTS : -ing | AS / LIKE | Abréviations | Accord/Désaccord | Activités | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Be | Betty | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contractions | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Ecole | En attente | Exclamations | Faire faire | Famille | Faux amis | Films | For ou since? | Formation | Futur | Fêtes | Genre | Get | Goûts | Grammaire | Guide | Géographie | Habitudes | Harry Potter | Have | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Make/do? | Maladies | Mars | Matilda | Modaux | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Neige | Nombres | Noms | Nourriture | Négation | Opinion | Ordres | Participes | Particules | Passif | Passé | Pays | Pluriel | Plus-que-parfait | Politesse | Ponctuation | Possession | Poèmes | Present perfect | Pronoms | Prononciation | Proverbes et structures idiomatiques | Prépositions | Présent | Présenter | Quantité | Question | Question Tags | Relatives | Royaume-Uni | Say, tell ou speak? | Sports | Style direct | Subjonctif | Subordonnées | Suggérer quelque chose | Synonymes | Temps | Tests de niveau | There is/There are | Thierry | This/That? | Tous les tests | Tout | Traductions | Travail | Téléphone | USA | Verbes irréguliers | Vidéo | Villes | Voitures | Voyages | Vêtements

> INSEREZ UN PEU D'ANGLAIS DANS VOTRE VIE QUOTIDIENNE ! Rejoignez-nous gratuitement sur les réseaux :
Instagram | Facebook | Twitter | RSS | Linkedin | Email

> NOS AUTRES SITES GRATUITS : Cours de français | Cours de mathématiques | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provençal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

> Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée | Cookies. [Modifier vos choix]
| Cours, leçons et exercices d'anglais 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès. | Livre d'or | Partager sur les réseaux |