Cliquez ici pour revenir à l'accueil... Créer un test / 1 leçon par semaine
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
4 millions de comptes créés

100% gratuit !
[Avantages]


Comme des milliers de personnes, recevez gratuitement chaque semaine une leçon d'anglais !



- Accueil
- Aide/Contact
- Accès rapides
- Imprimer
- Lire cet extrait
- Livre d'or
- Nouveautés
- Plan du site
- Presse
- Recommander
- Signaler un bug
- Traduire cet extrait
- Webmasters
- Lien sur votre site




> Publicités :




> Partenaires :
-Jeux gratuits
-Nos autres sites
   


Démonstration

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Démonstration
Message de nounous posté le 08-11-2019 à 20:17:46 (S | E | F)
Bonsoir. J'ai encore un problème avec le cours sur le barycentre de deux points pondérés sur un démonstration.

Énoncé : Soit A et B deux points distincts (du plan ou de l'espace).

1)Montrer que si M appartient au segment [AB], alors M est barycentre des points A et B affectés des coefficients de meme
Signe.

2) Réciproquement montrer que si G est le barycentre des points A et B affectés des coefficients de même signe, alors G appartient au segment [AB].

3)conclure en énonçant une propriété


J'ai vraiment besoin d'explications afin de commencer les démonstrations.
Merci d'avance pour vos réponses.



Réponse : Démonstration de flaja, postée le 09-11-2019 à 10:33:44 (S | E)
M à l'intérieur du segment [A,B] si ses coefficients de pondération sont positifs :
(alpha + beta) M = alpha A + beta B

pour voir si M est dans [A,B] :
méthode 1 :
Si le produit scalaire AM.AB > 0 : M est du côté B de A
Si le produit scalaire BM.BA > 0 : M est du côté A de B
Ces 2 conditions assurent que M est dans [A,B]
méthode 2 :
Si le produit scalaire : MA.MB < 0 : M est entre A et B
Cette condition assure que M est dans [A,B]



Réponse : Démonstration de flaja, postée le 09-11-2019 à 11:09:15 (S | E)
pour la question 1 :
traduire que M dans [AB] :
AM = k AB avec k dans [0;1]
(ou BM = k' BA avec k' dans [0;1])



Réponse : Démonstration de nounous, postée le 09-11-2019 à 16:01:20 (S | E)
Bonsoir. Je vous remercie pour votre réponse.

En effet, je ne parviens toujours pas à le démontrer car peu importe la méthode que j'aie utilisée , je ne trouve pas des réels (coefficients de pondération) respectifs de A et B.
Je ne sais pas vraiment quoi faire malgré ces différentes méthodes.
Merci pour votre compréhension



Réponse : Démonstration de tiruxa, postée le 09-11-2019 à 16:37:13 (S | E)
Bonjour,

Comme te l'a suggéré Flaja, pour le 1) si M est sur le segment [AB]

on a vecteur(AM) = k * vecteur(AB) où k est un réel élément de [0;1]

Il suffit de transformer la relation vectorielle pour arriver à démontrer que M est barycentre de A et B avec des coefficients ..... (à déterminer)




Réponse : Démonstration de flaja, postée le 09-11-2019 à 22:08:09 (S | E)
réponse à la question 1 :
1) AM = k AB :
M - A = k (B - A)
ou OM - OA = k (OB - OA)
<b>M = (1-k) A + k B</b>
ou OM = (1-k) OA + k OB
comme 0 < k < 1 => 0 > -k > -1 => 1 > 1-k > 0
M à l'intérieur de AB => M est barycentre de AB avec des coefficients dans [0;1] dont la somme vaut 1

On peut multiplier ces coefficients par un nombre quelconque positif ou négatif sans modifier M :
alpha M = alpha (1-k) A + alpha k B
le produit : alpha (1-k) alpha k = k (1-k) alpha^2 > 0 : les coefficients sont de mêmes signes



Réponse : Démonstration de tiruxa, postée le 10-11-2019 à 19:11:41 (S | E)
Bonjour,

1) AM = k AB :
M - A = k (B - A)
ou OM - OA = k (OB - OA)
M = (1-k) A + k B
ou OM = (1-k) OA + k OB
comme 0 < k < 1 => 0 > -k > -1 => 1 > 1-k > 0

Tout ceci est correct (les inégalités sont toutefois au sens large), il suffit ensuite de dire que k et 1-k sont de même signe pour terminer le 1°)

Reste à faire la réciproque en partant par exemple de M barycentre de (A,a) (B,b) avec a et b de même signe (et de somme non nulle). On peut prendre a et b tous deux positifs car s'ils étaient négatifs en multipliant par (-1) on se ramènerait a des coeffs positifs.
Il te reste à exprimer le vecteur AM en fonction du vecteur AB, plus précisément sous la forme k vecteur AB avec k élément de [0;1]

Bon travail





[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths


Partager : Facebook / Twitter / ... 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Une leçon par email par semaine | Aide/Contact

> COURS ET TESTS : -ing | AS / LIKE | Abréviations | Accord/Désaccord | Activités | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Be | Betty | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contractions | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Ecole | En attente | Exclamations | Faire faire | Famille | Faux amis | Films | For ou since? | Formation | Futur | Fêtes | Genre | Get | Goûts | Grammaire | Guide | Géographie | Habitudes | Harry Potter | Have | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Make/do? | Maladies | Mars | Matilda | Modaux | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Neige | Nombres | Noms | Nourriture | Négation | Opinion | Ordres | Participes | Particules | Passif | Passé | Pays | Pluriel | Plus-que-parfait | Politesse | Ponctuation | Possession | Poèmes | Present perfect | Pronoms | Prononciation | Proverbes et structures idiomatiques | Prépositions | Présent | Présenter | Quantité | Question | Question Tags | Relatives | Royaume-Uni | Say, tell ou speak? | Sports | Style direct | Subjonctif | Subordonnées | Suggérer quelque chose | Synonymes | Temps | Tests de niveau | There is/There are | Thierry | This/That? | Tous les tests | Tout | Traductions | Travail | Téléphone | USA | Verbes irréguliers | Vidéo | Villes | Voitures | Voyages | Vêtements


> NOS AUTRES SITES GRATUITS : Cours mathématiques | Cours d'espagnol | Cours d'allemand | Cours de français | Cours de néerlandais | Outils utiles | Bac d'anglais | Learn French | Learn English | Créez des exercices

> INFORMATIONS : Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies.
| Cours, leçons et exercices d'anglais 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.